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1. Introduction 

In this paper, we consider the influence of 
edge effects arising when pipes and pipelines of a 
finite length are immersed in another medium. It 
is assumed that one end or both ends of a pipe or 
pipeline (hereinafter inclusions) having a finite 
length is immersed in some foreign medium 
(hereinafter matrix) in the well and boundary 
value problems are considered about the current 
stress state of pipes, pipelines and rods [1-3] ... 

In the following, we continue to study the 
boundary value problems considered in the 
previous work, taking into account the following 
additions [4-5]: 

a)  changes in the shape of the cross-section of 
the pipe - inclusions; 

b)  changes in the properties of the inclusion 
material and matrix - rock; 

c)  the influence of the thermal effects of the 
matrix. 

2. Research methods  

Consider the singular problem of stretching 
an elastic plane along a thin rigid inclusion of 
high thermal conductivity and finite width 2l, 
coupled to the rest of the body by the matrix at 

all points of the lateral surface, i.e. conjugate to 
the matrix. In this case, when the Young's 
modulus of the inclusion 2l is much greater than 

its thickness , i.e. , 

where E+ and E– – are Young's module of the 
inclusion and the matrix, respectively, near the 

inclusion in the matrix there is a boundary layer 

in which only the shear stress 12 is significant, 
and all other voltages are negligible [6]. 

Let us assume that the inclusion is located 

along the segment  in the matrix 

stretched at infinity by the stress 11=P11 along 
the inclusion (Fig. 1). 

 
Fig. 1. 

The general solution of the boundary layer 
equations in the matrix is as follows: 
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Here   and   are arbitrary functions х1,   is the 
matrix shift modulus.  

As you can see, the stress 12 is constant in the 
cross-section of the boundary layer and is equal 

to the shear stress (х1) on the banks of the 
inclusion, and the displacement u1 is linear 
(function) х2. 

At x2=0, the boundary layer is associated with 
an inclusion. Due to rigid adhesion to the matrix, 
the displacement u1 of the matrix at this point 
should be the same as the displacement u1 of the 
inclusion. 

Therefore, V=V(x1) in formulas (1) is the dis-
placement of the inclusion at the corresponding 
points. 

At the boundary of the boundary layer at 
x2=±A, the field in the boundary layer (1) must be 
"stitched" with the external, unperturbed field 

 as a condition for "stitching" it is 

natural to require the equality of the longitudinal 

deformation  and another field at 

the boundary of the boundary layer at  

As a result, based on (1), we obtain 
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Together with the equations 

  (3) 

we obtain a closed system of ordinary differential 

equations for the functions V,   and . 

The solution to this system gives the desired 

solution to the problem posed in the boundary 
layer approximation [7]. 

The structure of the field is shown in Fig. 1: 

the inside of the rectangle  is 

the boundary layer, the outside of the same 
rectangle is the unperturbed field. 

First, we exclude  from system (2), (3), 

we find 
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Now we substitute  from the second equation 

in (4) into the first, we obtain  
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Here, the thickness  is assumed to be 
independent of х1 

The general solution of this second-order 

differential equation has the form: 
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where  
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Here C1 and C2 are arbitrary constants. 

3. Results and discussion 

The inclusion can be subjected to direct external 
loads applied to it. Consider the following four 
options loaded (Fig. 2). 

 
Fig. 2. 

1.  Switching on is free from external loads. In 
this case, the switch-off ends can be considered 

unfinished, so that the voltage   at the ends is 
equal to zero 

at         (8) 

2.  External forces are applied to both ends of 
the inclusion. In this case, we have 

at         (9) 

where р is the force per unit of thickness (normal 
to Fig. 2). 
3.  Force P is applied to only one end. 

In this case, the following boundary 

conditions will be 

at      

at               (10) 

4.  The force P is applied at some point  

of the inclusion. In this case, the solution has a 

discontinuity at the point ;  find 

at   

at    

              (11) 

The linear superposition of these four cases 
allows us to study the general case of an 
arbitrary external load on the inclusion [8]. 
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We present the values of the constants C1 and 
C2 in the general solution (6) for the first three 
cases, obtained as a result of simple calculations: 

1.  Switching on is free from external loads, 
only the external р11 field in the matrix acts  

ech

P
CC

 )1(2 2
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21 


  (12) 

2. Tensile forces P are applied to both ends of 
the inclusion, there is no external field in the 
matrix (р11=0): 
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P
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2
21   (13) 

3. Force P is applied only to the right end of 
the switch, there is no external field in the matrix 
(р11=0): 
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In the case of the action of the internal force P 

at the point , the solution consists of two 

analytical parts (piecewise analytical solution):  
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Here V1  and V2 are some constants; only one 

of them can be set equal to zero, since it is 
determined by the displacement of the body as a 
whole. Therefore, condition (15) does not provide 
an additional condition for determining the 
voltage field in the inclusion. 

Note that the equilibrium condition for the 
entire inclusion as a whole must always be 
satisfied [9] 
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It's not hard to check. that in all previously 
considered cases 1, 2, 3, the equilibrium 
condition as a whole is satisfied automatically. 

Using solution (14) and (15), we present the 
following convenient formulas: 
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In the considered case of the action of an 
internal force, on the basis of (2), (3) and (18), 
one should additionally assume that the function 

 is continuous at the point  of 

application of an external force P, i.e. 

              (19) 

Using the second relation (3) and (15), from 

this we find 

              (20) 

and     

 
On the other hand, conditions (11) based on 

(15) give 
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The solution of system (20) and (21), 
consisting of four linear equations, can be 
written in the following final form: 

4.  Force P is applied at the internal point 

 of the inclusion, there is no external 

field in the matrix ( )  
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The general qualitative picture of the 

behavior of the functions V(x1), (x1), and (x1)in 

this case, according to (22), is shown in Fig. 3.    

the functions V(x1) and (x1) are continuous 
everywhere, but have a break at the point  

 (jump of the derivative). The function 

 has a discontinuity of the first kind at the 

point . 
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a) 

 

b) 

 

v) 

Fig. 3 

Solution (22) allows solving the problem of an 
arbitrarily distributed external load in the 

inclusion . For this, it is necessary to 

replace р by р d  in formulas (22) and integrate 

over   from  –l to l. We get: 
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Using formulas (6), (12) - (14), we study the 
stresses in the connection for the following most 
interesting cases [10-12]. 

1. Switching on is free from external loads, the 
matrix is stretched by stress р11 in an unperturbed 
field. 

In this case 
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(х1<l) 
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Diagrams of stresses (x1) and (x1) in this 
case are shown in Fig. 4.  

The greatest value of the voltage in the 

inclusion  = max is achieved in its middle at х1=0.  
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The tangential stress (x1)  at this point 
vanishes. 

Using (7) we transform the divisor value 
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Therefore, we have (>>I): 
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a) 

b) 

Fig. 4. 

Let us dwell in more detail on two limiting 
cases: 

very wide inclusion when l>>I 

max = p11                (28) 

ideal-hard switching when l<<I 
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As you can see, the wider and tougher the thin 
inclusion, the greater the stresses are 
concentrated in it; in this case, in the disturbed 
zone (boundary layer), the matrix is completely 
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freed from normal stresses. This reinforcement 
effect is practically used in composite materials. 
Switching voltages can be thousands of times 
higher than matrix voltages [13-17]. 

However, the possible effect of the inclusion 
width is limited by the tensile strength of the 
inclusion, since an inclusion that is too wide 
breaks in half in the middle. Let us find the 
maximum width of the inclusion l=lmax, at which in 
its middle, at the point х1=0, the limiting tensile 

strength of the inclusion is achieved =В; using 

(29), we find 
1

11

max 1
1
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0<l<lmax 
Thus, the greater the Young's modulus of the 

inclusion and its tensile strength, the greater the 
reinforcing effect.. 

2. Tensile forces p are applied to both ends of 
the inclusion, there is no external field in the 
matrix ( ). 

In this case, we have 
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The stress diagrams   and   in this case are 
shown in Fig. 5.  

The greatest value of stress  is achieved at 
the ends of the inclusion, therefore, the possible 
magnitude of the force р is limited by the 

strength of the inclusion at break  рВ. 
3. Force p is applied only to the right end of 

the inclusion, there is no external field in the 
matrix (р11=0). 

In this case, we have 
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Fig. 5. 

Diagrams of stresses   and   in the inclusion 
are shown in Fig. 6. 

 
a)                                                   b) 

 
v)  

Fig. 6. 

Consider one interesting limiting case of this 
problem, when the width of the inclusion tends 

to infinity ( l). 
First, in formula (32), we transfer the origin of 

coordinates to the right end (Fig. 6), we obtain 
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For a very wide inclusion, when ( l), from 
this we find    
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( l>>1,  х1<0) 
As can be seen, the perturbation from the 

external force p decays at a distance of the order 

of (3/) from the end of the inclusion [18-22]  

4. Conclusions 

We consider the singular problem of stretching 
an elastic plane along a rigid inclusion of high 
thermal conductivity and finite length, coupled to 
the rest of the body by the matrix at all points of the 

lateral surface, which is conjugate to the matrix. A 
general technique for solving such problems is 
built, qualitative and quantitative estimates are 
given to the stress states of the inclusion and 
matrix in the following loaded methods: 

- switching on is free from external loads; 

- external loads are applied to both ends of the 
connection; 

- an external force is applied only to one of the 

ends of the inclusion; 

- external force is applied to an arbitrary 

switching point. 
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